Did you know ... | Search Documentation: |
Pack matrix -- prolog/matrix.pl |
This module performs matrix operations. Impemented operations:
The library was developed for dealing with multivariate Gaussian distributions, that's the reson for the focus on positive semi-definite matrices
?- determinant([[2,-1,0],[-1,2,-1],[0,-1,2]],D). D = 3.999999999999999.
diag(Vect)
?- matrix_inversion([[2,-1,0],[-1,2,-1],[0,-1,2]],L). L = [[0.7499999999999999, 0.5000000000000001, 0.2500000000000001], [0.5000000000000001, 1.0000000000000004, 0.5000000000000002], [0.2500000000000001, 0.5000000000000002, 0.7500000000000001]].
?- matrix_inv_triang([[2,0,0],[-1,2,0],[0,-1,2]],L). L = [[0.5, 0.0, 0.0], [0.25, 0.5, 0.0], [0.125, 0.25, 0.5]].
?- matrix_multiply([[1,2],[3,4],[5,6]], [[1,1,1],[1,1,1]],R). R = [[3, 3, 3], [7, 7, 7], [11, 11, 11]].
code from http://stackoverflow.com/questions/34206275/matrix-multiplication-with-prolog
matrix_sum([[1,2],[3,4],[5,6]],[[1,2],[3,4],[5,6]],M). M = [[2, 4], [6, 8], [10, 12]].
cholesky_decomposition([[25, 15, -5], [15, 18, 0], [-5, 0, 11]],L). L = [[5.0, 0, 0], [3.0, 3.0, 0], [-1.0, 1.0, 3.0]]. cholesky_decomposition([[18, 22, 54, 42],[22, 70, 86, 62],[ 54, 86, 174, 134],[ 42, 62, 134, 106]],L). L = [[4.242640687119285, 0, 0, 0], [5.185449728701349, 6.565905201197403, 0, 0], [12.727922061357857, 3.0460384954008553, 1.6497422479090704, 0], [9.899494936611667, 1.624553864213788, 1.8497110052313648, 1.3926212476456026]].