1:- module( mlu, [ 2 % k_fold_learn/5, 3 k_fold_pairwise_comparisons/6, 4 k_fold_pairwise_predictions/6, 5 k_fold_segments/4, 6 mlu_sample/4, mlu_sample/5, 7 mlu_frequency_plot/2, 8 mlu_errors/0, 9 mlu_version/2 10 ] ). 11 12:- use_module( library(lists) ). 13:- use_module( library(lib) ). 14 15:- lib(source(mlu),homonyms(true)). 16 17:- lib(os_lib). 18:- lib(debug_call). 19:- lib(pack_errors). 20 21:- lib(stoics_lib:at_con/3). 22:- lib(stoics_lib:arity/3). 23:- lib(stoics_lib:holds/2). 24 25:- lib(k_fold_learn/5). 26:- lib(k_fold_pairwise_comparisons/6). 27:- lib(k_fold_pairwise_predictions/6). 28:- lib(k_fold_segments/4). 29:- lib(mlu_errors/0). 30:- lib(mlu_sample/4). 31:- lib(mlu_frequency_plot/2). 32:- lib(end(mlu)).
?- mlu_version( V, D ). V = 0:5:0, D = date(2022, 12, 29).
*/
66mlu_version( 0:5:0, date(2022,12,29) )
Machine learning utilities
A menagerie of machine learning utilities.
Currently implements k_fold learning and k_fold comparative performance plots via Real.
It is likely that bootstrapping will be added soon and also a couple of additional types of comparative plots.
Pack info
pack(mlu/examples/stoic.pl)
*/